Machine Learning - Production Overview
Deployment patterns
- Batch scoring to a store (offline).
- Online low-latency APIs (autoscaling, caching, fallbacks).
- On-device/Edge (CoreML/TFLite/ONNX).
Simple FastAPI serving
# pip install fastapi uvicorn scikit-learn
from fastapi import FastAPI
from pydantic import BaseModel
import joblib, numpy as np
class Item(BaseModel):
features: list
app = FastAPI()
model = joblib.load("model.joblib")
@app.post("/predict")
def predict(item: Item):
X = np.array([item.features])
y = model.predict(X).tolist()
return {"prediction": y}