Machine Learning - Experiment Tracking
What to track
- Params: hyperparameters, data versions, code commit hash.
- Metrics: loss/accuracy, latency, drift metrics.
- Artifacts: models, plots, confusion matrices.
MLflow quick start
# pip install mlflow
import mlflow
mlflow.set_experiment("demo")
with mlflow.start_run():
mlflow.log_params({"lr": 1e-3, "epochs": 10})
mlflow.log_metric("val_acc", 0.91)
mlflow.log_artifact("model.joblib")